Cross-correlation beamforming
نویسندگان
چکیده
An areal distribution of sensors can be used for estimating the direction of incoming waves through beamforming. Beamforming may be implemented as a phase-shifting and stacking of data recorded on the different sensors (i.e., conventional beamforming). Alternatively, beamforming can be applied to cross-correlations between the waveforms on the different sensors. We derive a kernel for beamforming cross-correlated data and call it cross-correlation beamforming (CCBF). We point out that CCBF has slightly better resolution and aliasing characteristics than conventional beamforming. When auto-correlations are added to CCBF, the array response functions are the same as for conventional beamforming. We show numerically that CCBF is more resilient to non-coherent noise. Furthermore, we illustrate that with CCBF individual receiver-pairs can be removed to improve mapping to the slowness domain. An additional flexibility of CCBF is that cross-correlations can be time-windowed prior to beamforming, e.g., to remove the directionality of a scattered wavefield. The observations on synthetic data are confirmed with field data from the SPITS array (Svalbard). Both when beamforming an earthquake arrival and when beamforming ambient noise, CCBF focuses more of the energy to a central beam. Overall, the main advantage of CCBF is noise suppression and its flexibility to remove station pairs that deteriorate the signal-related beampower. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s10950-016-9612-6) contains supplementary material, which is available to authorized users.
منابع مشابه
Capacity Enhancement of Ad Hoc Networks using a New Beamforming Scheme Based on ESPAR
This paper proposes a new smart antenna beamforming scheme based on electronically steerable parasitic array radiator (ESPAR). The proposed method is capable of providing better capacity compared to the conventional ESPAR. The termination of each antenna element in this structure comprises a PIN diode in addition to a varactor. Using PIN diode besides the varactor provides more degrees of freed...
متن کاملFast Beamforming of Compact Array Antenna
In this chapter, we describe a compact array antenna. Beamforming is achieved by tuning the load reactances at parasitic elements surrounding the active central element. The existing beam forming algorithms for this reactively controlled parasitic array antennas require long training time. In comparison with these algorithms, a faster beamforming algorithm, based on simultaneous perturbation st...
متن کاملEnhancements to the Generalized Sidelobe Canceller for Audio Beamforming in an Immersive Environment
OF THESIS Enhancements to the Generalized Sidelobe Canceller for Audio Beamforming in an Immersive Environment The Generalized Sidelobe Canceller is an adaptive algorithm for optimally estimating the parameters for beamforming, the signal processing technique of combining data from an array of sensors to improve SNR at a point in space. This work focuses on the algorithm’s application to widely...
متن کاملDesign of Robust Adaptive Beamforming Algorithms Based on Low-Rank and Cross-Correlation Techniques
This work presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Firstly, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then...
متن کاملTarget Signal Detection Using MUSIC Spectrum in Noise Environment
In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we util...
متن کامل